Publication list

2020

  1. Hanschke, L. et al. Origin of Antibunching in Resonance Fluorescence. Phys. Rev. Lett. 125, 170402 (2020).
  2. Schöll, E. et al. Crux of Using the Cascaded Emission of a Three-Level Quantum Ladder System to Generate Indistinguishable Photons. Phys. Rev. Lett. 125, 233605 (2020).

2021

  1. Julia Neuwirth et al 2021, Quantum dot technology for quantum repeaters: from entangled photon generation toward the integration with quantum memories, Mater. Quantum. Technol. 1 043001
  2. da Silva, S. F. C. et al. GaAs quantum dots grown by droplet etching epitaxy as quantum light sources. Appl. Phys. Lett. 119, 120502 (2021).
  3. Huang, H. et al. Electric field induced tuning of electronic correlation in weakly confining quantum dots. Phys. Rev. B 104, 165401 (2021).
  4. Basso Basset, F. et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 7, 1–8 (2021).
  5. Carvacho, G. et al. Quantum violation of local causality in urban network with hybrid photonic technologies. arXiv preprint (2021).
  6. Vichi, S. et al. Optically controlled dual-band quantum dot infrared photodetector. arXiv preprint (2021).
  7. Bauch, D., Heinze, D., Förstner, J., Jöns, K. D. & Schumacher, S. Ultrafast electric control of cavity mediated single-photon and photon-pair generation with semiconductor quantum dots. Phys. Rev. B 104, 085308 (2021).
  8. Schimpf, C., Manna, S., Da Silva, S. F. C., Aigner, M. & Rastelli, A. Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 K. Advanced Photonics, Vol. 3, Issue 6, 065001 (2021).
  9. Schimpf, C. et al. Quantum cryptography with highly entangled photons from semiconductor quantum dots. Sci. Adv. 7, eabe8905 (2021).
  10. Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: Perspectives and challenges for applications in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).
  11. Huang, H. et al. Bright Single Photon Emission from Quantum Dots Embedded in a Broadband Planar Optical Antenna. Adv. Opt. Mater. 9, 2001490 (2021).
  12. Main, D. et al. Preparing narrow velocity distributions for quantum memories in room-temperature alkali-metal vapors. Phys. Rev. A 103, 043105 (2021).
  13. Nicolle, M., Becker, J. N., Weinzetl, C., Walmsley, I. A. & Ledingham, P. M. Gigahertz-bandwidth optical memory in Pr 3+ :Y 2 SiO 5. Opt. Lett. 46, 2948 (2021).
  14. Main, D., Hird, T. M., Gao, S., Walmsley, I. A. & Ledingham, P. M. Room temperature atomic frequency comb storage for light. Opt. Lett. 46, 2960 (2021).
  15. Nawrath, C. et al. Resonance fluorescence of single In(Ga)As quantum dots emitting in the telecom C-band. Appl. Phys. Lett. 118, 244002 (2021).
  16. Kolatschek, S. et al. Bright Purcell Enhanced Single-Photon Source in the Telecom O-Band Based on a Quantum Dot in a Circular Bragg Grating. Nano Lett. 21, 7740−7745 (2021).
  17. Z. Lin et al., Efficient and versatile toolbox for analysis of time-tagged measurements,2021 JINST 16 T08016 (2021).
  18. T. Lettner et al., Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm, Nano Lett. 2021, 21, 24, 10501–10506

2022

  1. Bozzio, M., Vyvlecka, M., Cosacchi, M. et al. Enhancing quantum cryptography with quantum dot single-photon sources. npj Quantum Inf 8, 104 (2022).
  2. Sittig, Robert, Nawrath, Cornelius, Kolatschek, Sascha, Bauer, Stephanie, Schaber, Richard, Huang, Jiasheng, Vijayan, Ponraj, Pruy, Pascal, Portalupi, Simone Luca, Jetter, Michael and Michler, Peter. "Thin-film InGaAs metamorphic buffer for telecom C-band InAs quantum dots and optical resonators on GaAs platform" Nanophotonics, vol. 11, no. 6, 2022, pp. 1109-1116.
  3. Gonzalo Carvacho, Emanuele Roccia, Mauro Valeri, Francesco Basso Basset, Davide Poderini, Claudio Pardo, Emanuele Polino, Lorenzo Carosini, Michele B. Rota, Julia Neuwirth, Saimon F. Covre da Silva, Armando Rastelli, Nicolò Spagnolo, Rafael Chaves, Rinaldo Trotta, and Fabio Sciarrino, "Quantum violation of local causality in an urban network using hybrid photonic technologies," Optica 9, 572-578 (2022).
  4. Jonas, B., Heinze, D., Schöll, E. et al. Nonlinear down-conversion in a single quantum dot. Nat Commun 13, 1387 (2022).
  5. T. Seidelmann, C. Schimpf, T. K. Bracht, M. Cosacchi, A. Vagov, A. Rastelli, D. E. Reiter, and V. M. Axt, Two-Photon Excitation Sets Limit to Entangled Photon Pair Generation from Quantum Emitters, Phys. Rev. Lett. 129, 193604 (2022).
  6. Julia Neuwirth, Francesco Basso Basset, Michele B. Rota, Jan-Gabriel Hartel, Marc Sartison, Saimon F. Covre da Silva, Klaus D. Jöns, Armando Rastelli, and Rinaldo Trotta,Multipair-free source of entangled photons in the solid state, Phys. Rev. B 106, L241402 (2022).
  7. Friedrich Sbresny, Lukas Hanschke, Eva Schöll, William Rauhaus, Bianca Scaparra, Katarina Boos, Eduardo Zubizarreta Casalengua, Hubert Riedl, Elena del Valle, Jonathan J. Finley, Klaus D. Jöns, and Kai Müller, Stimulated Generation of Indistinguishable Single Photons from a Quantum Ladder System, Phys. Rev. Lett. 128, 093603 (2022).
  8. Julian Mümzberg et al., Fast and efficient demultiplexing of single photons from a quantum dot with resonantly enhanced electro-optic modulators, APL Photonics 7, 070802 (2022).
  9. Yusuf Karli et al., SUPER Scheme in Action: Experimental Demonstration of Red-Detuned Excitation of a Quantum Emitter, Nano Lett. 2022, 22, 16, 6567–6572

2023

  1. C. Nawrath, R. Joos, S. Kolatschek, S. Bauer, P. Pruy, F. Hornung, J. Fischer, J. Huang, P. Vijayan, R. Sittig, M. Jetter, S. L. Portalupi, P. Michler, Bright Source of Purcell-Enhanced, Triggered, Single Photons in the Telecom C-Band. Adv Quantum Technol. 2023, 6, 2300111
  2. Michal Vyvlecka, Lennart Jehle, Cornelius Nawrath, Francesco Giorgino, Mathieu Bozzio, Robert Sittig, Michael Jetter, Simone L. Portalupi, Peter Michler, Philip Walther; Robust excitation of C-band quantum dots for quantum communication. Appl. Phys. Lett. 23 October 2023; 123 (17): 174001.
  3. S.E. Thomas, S. Sagona-Stophel, Z. Schofield, I.A. Walmsley, and P.M. Ledingham, Single-Photon-Compatible Telecommunications-Band Quantum Memory in a Hot Atomic Gas. Phys. Rev. Applied 19, L031005 (2023).
  4. Barbara Ursula Lehner et al., Beyond the Four-Level Model: Dark and Hot States in Quantum Dots Degrade Photonic Entanglement, Nano Lett. 2023, 23, 4, 1409–1415
  5. Two-photon excitation with finite pulses unlocks pure dephasing-induced degradation of entangled photons emitted by quantum dots, T. Seidelmann, T. K. Bracht, B. U. Lehner, C. Schimpf, M. Cosacchi, M. Cygorek, A. Vagov, A. Rastelli, D. E. Reiter, and V. M. Axt, Phys. Rev. B 107, 235304 (2023).
  6. Geoffrey Pirard, Francesco Basso Basset, Sergio Bietti, Stefano Sanguinetti, Rinaldo Trotta, and Gabriel Bester,Effects of random alloy disorder, shape deformation, and substrate misorientation on the exciton lifetime and fine structure splitting of GaAs/AlxGa1xAs(111) quantum dots,Phys. Rev. B 107, 205417 (2023).
  7. Xueyong Yuan, Saimon F. Covre da Silva, Diana Csontosová, Huiying Huang, Christian Schimpf, Marcus Reindl, Junpeng Lu, Zhenhua Ni, Armando Rastelli, and Petr Klenovský,GaAs quantum dots under quasiuniaxial stress: Experiment and theory,
    Phys. Rev. B 107, 235412 (2023).
  8. Millington-Hotze, P., Manna, S., Covre da Silva, S.F. et al. Nuclear spin diffusion in the central spin system of a GaAs/AlGaAs quantum dot. Nat Commun 14, 2677 (2023).
  9. Yu, Y., Liu, S., Lee, CM. et al. Telecom-band quantum dot technologies for long-distance quantum networks. Nat. Nanotechnol. 18, 1389–1400 (2023).
  10. Christian Schimpf, Francesco Basso Basset, Maximilian Aigner, Wolfgang Attenender, Laia Ginés, Gabriel Undeutsch, Marcus Reindl, Daniel Huber, Dorian Gangloff, Evgeny A. Chekhovich, Christian Schneider, Sven Höfling, Ana Predojević, Rinaldo Trotta, and Armando Rastelli, Hyperfine interaction limits polarization entanglement of photons from semiconductor quantum dots, Phys. Rev. B 108, L081405 (2023).
  11. F. Basso Basset, M. B. Rota, M. Beccaceci, T. M. Krieger, Q. Buchinger, J. Neuwirth, H. Huet, S. Stroj, S. F. Covre da Silva, G. Ronco, C. Schimpf, S. Höfling, T. Huber-Loyola, A. Rastelli, and R. Trotta,Signatures of the Optical Stark Effect on Entangled Photon Pairs from Resonantly Pumped Quantum Dots, Phys. Rev. Lett. 131, 16690 (2023).
  12. Tobias Heindel, Je-Hyung Kim, Niels Gregersen, Armando Rastelli, and Stephan Reitzenstein, "Quantum dots for photonic quantum information technology," Adv. Opt. Photon. 15, 613-738 (2023)
  13. F Basso Basset et al., Daylight entanglement-based quantum key distribution with a quantum dot source 2023 Quantum Sci. Technol. 8 025002
  14. Vikas Remesh, Ria G. Krämer, René Schwarz, Florian Kappe, Yusuf Karli, Malte Per Siems, Thomas K. Bracht, Saimon Filipe Covre da Silva, Armando Rastelli, Doris E. Reiter, Daniel Richter, Stefan Nolte, Gregor Weihs; Compact chirped fiber Bragg gratings for single-photon generation from quantum dots. APL Photonics 1 October 2023; 8 (10): 101301.
  15. Florian Kappe et al., Collective excitation of spatio-spectrally distinct quantum dots enabled by chirped pulses, 2023 Mater. Quantum. Technol. 3 025006
  16. Zaporski, L., Shofer, N., Bodey, J.H. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nat. Nanotechnol. 18, 257–263 (2023).

2024

  1. Florian Hornung et al., Highly Indistinguishable Single Photons from Droplet-Etched GaAs Quantum Dots Integrated in Single-Mode Waveguides and Beamsplitters. Nano Lett. 2024, 24, 4, 1184–1190
  2. Ponray Vijayan et al., grwoth of telecom C-band In(Ga)As quantum dots for silicon quantum photonics Mater. Quantu,. Technol. 4 016301 (2024).
  3. Sarah E. Thomas et al., Deterministic storage and retrieval of telecom light from a quantum dot single-photon source interfaced with an atomic quantum memory.Sci. Adv.10,eadi7346(2024).
  4. K. Boos, F. Sbresny, S. K. Kim, M. Kremser, H. Riedl, F. W. Bopp, W. Rauhaus, B. Scaparra, K. D. Jöns, J. J. Finley, K. Müller, L. Hanschke, Coherent Swing-Up Excitation for Semiconductor Quantum Dots. Adv Quantum Technol. 2024, 7, 2300359.
  5. Millington-Hotze, P., Dyte, H.E., Manna, S. et al. Approaching a fully-polarized state of nuclear spins in a solid. Nat Commun 15, 985 (2024).
  6. Harry E. Dyte, George Gillard, Santanu Manna, Saimon F. Covre da Silva, Armando Rastelli, and Evgeny A. Chekhovich, Is Wave Function Collapse Necessary? Explaining Quantum Nondemolition Measurement of a Spin Qubit within Linear Evolution, Phys. Rev. Lett. 132, 160804 (2024).
  7. Tobias M. Krieger et al., Postfabrication Tuning of Circular Bragg Resonators for Enhanced Emitter-Cavity Coupling, ACS Photonics 2024, 11, 2, 596–603
  8. G. Peniakov, Q. Buchinger, M. Helal, S. Betzold, Y. Reum, M. B. Rota, G. Ronco, M. Beccaceci, T. M. Krieger, S. F. C. da Silva, A. Rastelli, R. Trotta, A. Pfenning, S. Höfling, T. Huber-Loyola, Polarized and Unpolarized Emission from a Single Emitter in a Bullseye Resonator. Laser Photonics Rev 2024, 18, 2300835.
  9. Karli, Y., Vajner, D.A., Kappe, F. et al. Controlling the photon number coherence of solid-state quantum light sources for quantum cryptography. npj Quantum Inf 10, 17 (2024).